
Fairness and Freedom for
Artists: Towards a Robot
Economy for the Music Indus-
try

Tim Wissel

Fairness and Freedom for
Artists: Towards a Robot

Economy for the Music Industry
by

Tim Wissel
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday, December 18, 2020 at XXX.

Student number: 4460251
Project duration: March 6, 2020 – XXX
Thesis committee: Dr. ir. J. Pouwelse, TU Delft, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Tim Wissel
Delft, October 2020

iii

Contents

1 Introduction 1
1.1 Monopolization on the Internet. 1
1.2 Towards a robot economy. 1
1.3 Centralization of power in the music industry . 2
1.4 Proposed solution: MusicDAO . 2

1.4.1 Experimentation and evaluation . 3

2 Problem description 5
2.1 History in the industry: centralization of power . 5
2.2 Intermediaries take a large share . 6
2.3 Financial transparency . 7
2.4 Monopoly power of centralized platforms. 7
2.5 Profit-driven recommendation engines . 8
2.6 Research question . 9

3 State of the Art 11
3.1 Decentralized Autonomous Organizations . 11
3.2 AI DAO . 11
3.3 Decentralized music distribution technologies . 12
3.4 Financial transparency in the music industry . 12
3.5 Decentralized application frameworks . 13
3.6 Decentralized content delivery networks . 13
3.7 Incentives for file hosting . 15

4 Design 17
4.1 Zero-cost autonomous music industry . 17
4.2 Phone-to-phone network . 18
4.3 Phone-to-phone censorship-free network . 18
4.4 Open protocol and artist freedom. 19
4.5 End-to-end music delivery model. 19
4.6 Identification of participants . 20
4.7 Establishing trust and reducing sybil attacks . 21
4.8 Distributed storage . 21
4.9 Peer-to-peer music sharing . 21
4.10 Distributed search . 21
4.11 Transparent money flow . 23

4.11.1 Wallet . 23
4.11.2 Artist Income Division Algorithm . 23

4.12 Content popularity gossiping algorithm . 24
4.13 Scalability . 24

5 Implementation 25
5.1 Zero-server infrastructure. 25
5.2 Phone-to-phone Android application . 25
5.3 Peer-to-peer content discovery . 26
5.4 Music streaming mechanism . 27
5.5 Peer-to-peer financial infrastructure . 27
5.6 Networking . 27

5.6.1 Release creation and sharing. 27
5.6.2 Content seeding . 28

v

vi Contents

5.7 Identity and authenticity . 28
5.8 Peer-to-peer keyword search . 28
5.9 Peer-to-peer payments to artists . 29
5.10 Gossip protocol for content popularity . 29
5.11 Quality assurance . 29

6 Evaluation 33
6.1 Unsupervised experiment: public release . 33

6.1.1 Automated starter money transactions. 33
6.1.2 Donation money flow . 33

6.2 Supervised experiments. 35
6.2.1 Downloading and streaming . 35
6.2.2 File headers and BitTorrent piece ordering . 36
6.2.3 Content discovery . 36
6.2.4 Random access latency . 38

6.3 Devices behind NATs . 38
6.4 Transaction fees. 38
6.5 Missing features. 39
6.6 Scalability . 39
6.7 Bitcoin node . 39
6.8 P2P bootstrap problem . 39
6.9 Battery usage . 39

7 Conclusion and Future Work 41
7.1 Generality: beyond music. 41
7.2 Future research directions . 41

Bibliography 43

1
Introduction

Music streaming services have an immense amount of power in the music industry. The biggest streaming
services dictate the rules which artists have to play by. The top 5 streaming services and the top 3 labels
dominate the market. Artists have a hard time to make a living because the streaming companies take large
revenue cuts. The centralization of power on Internet platforms cause unfairness in multiple industries, of
which the music industry is particularly affected. This thesis aims to distribute the power from centralized
streaming platforms to listeners and artists.

The music streaming industry is completely digital from recording and publishing to listening and digital
rights management. We investigate the feasibility of fully replacing this digital value chain by software.

This thesis presents a framework for building a robot economy in software. Additionally, it presents a
novel application which implements a few key components of this framework: P2P leaderless infrastructure,
resilient communication, trustless content sharing/exploration and a trustless monetary system. The appli-
cation is put in the context of music streaming.

1.1. Monopolization on the Internet
The Internet is moving from a network of people to a sparse selection of platforms over which nearly all com-
merce is regulated. A few Big Tech corporations are gaining increasing power in the the surface on which
market exchange takes place. The consumer choice is diminishing due to the power of oligarchs and monop-
olies. As explained by (Stiglitz, 2019), there is a fundamental problem: the growing “concentration of market
power, which allows dominant firms to exploit their customers and squeeze their employees, whose own
bargaining power and legal protections are being weakened”, while “[...] CEOs and executives are extracting
higher pay for themselves”.

1.2. Towards a robot economy
An alternative for Big Tech can be building a robot economy in software. Our vision of a robot economy fol-
lows recent theoretical groundwork by Arduengo and Sentis (2020): In a robot economy, intelligent robots
play a key role, by performing economic operations autonomously. Robot tasks are driven by artificial intel-
ligence, and cooperate with humans. In this world, a key difference is that robots now have internal funds
(which may be money, tokens or other assets) and can perform activities on their own. Our work sets the first
steps for this robot economy in software. Software as a robot economy is a service that runs autonomously,
with which humans interact. Humans can spend funds, perform decisions or interact with data, while the
software is run by robots.

A robot economy in software can have large influence: it can replace a company by software. With this
vision, we can design and implement systems that work in favor of its users instead of a company. In a tra-
ditional software system, a company decides the parameters and functions of software. In a software system
in the robot economy, the software system runs autonomously by robots. The parameters and functions of
this software system are voted on by its user base in a democratic voting process. Since to the introduction of
blockchains and crypto-currency, this voting process can be automated and transparent. Robots make intel-
ligent decisions based on data and value given by humans. Such an implementation can replace entire value
chains of industries.

1

2 1. Introduction

Figure 1.1: A robot economy in software: democratic and autonomous software

A full robot economy aims to have the following key characteristics:

• Automated;

• Transparent;

• Fair;

• Democratic;

• Open (permissionless);

• Leaderless;

• Self-evolving.

To accomplish these key characteristics in a software system, we envision the main building blocks to be as
described in fig. 1.1.

1.3. Centralization of power in the music industry
An industry with great consequences of this trend is the music industry. In the last 20 years there has been a
remarkably fast shift from the exchange of CDs in various stores to music streaming on the Internet. Music
platforms and labels use their economic muscle to push down artist salaries. They take large cuts of revenue
from the user subscription money.

Firstly, corporations with power squeeze the music production side by taking large cuts of revenue from
the user subscription money. As a result, the artists receive a low compensation. Especially independent
artists have a hard time making a living. The distributors Spotify, iTunes and Google Play take on a 25% to
40% revenue cut.

Secondly, Big Tech has curatorial power to decide what is shown in the catalog of their application. The
music catalog may seem endless, but in reality it is controlled by the Big Tech corporation and dictated by the
interests of major labels. The inner workings of recommendation algorithms and playlists are in the hands of
a few labels and streaming services.

Finally, the streaming companies can sensor tracks. The freedom of artist expression is then decided by
undemocratic judgments. Big Tech has the power to decide the future of an artist.

1.4. Proposed solution: MusicDAO
This thesis proposes an alternative technology from Big Tech streaming services. We design and implement
a decentralized system which attempts to replace the full value chain in music streaming industry, from the
subscription money to the artist, by removing all intermediaries and giving power back to the artists and
listeners. Listeners can stream music without being dependent on a single provider and can give money
directly to artists. Artists receive 100% of this donation and subscription money.

In essence, the solution is a decentralized autonomous organization (DAO) which is formed by listeners
and artists. A DAO is defined by Buterin (2014) as an “entity that lives on the internet and exists autonomously,
but also heavily relies on hiring individuals to perform certain tasks that the automaton itself cannot do” (see
3.1). In this thesis we present the design and implementation of our mobile android app MusicDAO: a music
streaming service for the common good. Users of this app form a phone-to-phone zero-server network over
which they publish music, download music and transfer money. This proof-of-principle of a DAO shows a
fair and transparent music streaming service in which no external servers, third parties or intermediaries are
necessary. Any person can join the network, publish music and get paid for it. 100% of music revenue goes to
artists.

MusicDAO supports the following functionalities:

• Defining and publishing music content with metadata;

• Streaming music over BitTorrent;

1.4. Proposed solution: MusicDAO 3

Figure 1.2: Artist compensation inconsistency

Component Focus in MusicDAO
Peer-to-peer leaderless infrastructure X
Resilient communication X
Trustless content sharing and exploration X
Trustless monetary system X
Democratic user engagement ×
AI for decision making (robot tasks) ×
Continuous code evolution and distribution ×

Table 1.1: The main components to achieve a robot economy in software

• Caching and streaming optimization algorithms;

• Browsing playlists;

• Remote keyword search;

• Peer-to-peer donations to artists using Bitcoin.

1.4.1. Experimentation and evaluation
In a real-world experiment with Android phones, we tested the feasibility of such a phone-to-phone infrastructure-
less system. We ran MusicDAO on at least X android devices, and registered the latency of retrieving music
metadata, and transaction speeds of transferring money and audio files.

2
Problem description

Music artists have a hard time making a living. The oligarchical power of music streaming services and labels
squeeze the production size of the music industry. The biggest music streaming services run centralized,
proprietary and closed-source software. The top 5 streaming services have a combined market share of 82%
(see 2.1), and have huge power over both the producer and receiver sides of music streaming. Because of
their power, they can ask high commission fees or lock artists to one platform. As a result, artists receive low
compensation. Furthermore, the recommendation and playlist generation algorithms are a black box to the
user. This gives streaming companies curatorial power. A visualization of the economic muscle of both the
label oligarchy and streaming platform oligarchy is shown in 2.1.

At the time of writing, there exists no alternative decentralized and transparent music streaming system
with peer-to-peer payments directly to artists.

2.1. History in the industry: centralization of power
The nature of distributing music has changed spectacularly in the last 30 years. There has been a remarkable
shift from physical sales, to online track downloads and piracy issues, to digital on-demand streaming. The
bargaining power in music sales was once distributed over many different physical stores and labels, but is
nowadays in the hand of a few labels and Big Tech corporations. The core problem follows: “A large number of
sellers (musicians, singers, bands) are in interaction with a very small numbers of buyers” (Rayna & Striukova,
2009).

In the CD era of music, every city would have one or a few stores selling physical records. There were
many music distribution companies competing for their sales.

With the rapid shift towards digital sales around the 2000s, IT companies used their advantage in terms of
network infrastructure to sell digital copies to massive audiences. The downfall of the physical record stores
began. At the same time, only a dozen digital stores managed to attract large audiences on their platforms,
and thus survived. This marked the start of platform accumulation (Meier & Manzerolle, 2019): routing all
music and money flow over centralized platforms.

Figure 2.1: The current flow from publishing music to receiving it as a listener. The figure shows that the framework on which music is
published and found is dominated by label and streaming oligarchs and by corporate decisions.

5

6 2. Problem description

Figure 2.2: Global recorded music industry revenues (in Billion USD). Source: (IFPI, 2020)

Streaming service Market share
Spotify 32%
Apple Music 18%
Amazon Music 14%
Tencent Music 11%
YouTube Music 6%
Total 82%

Table 2.1: Global music streaming market share, measured by subscriber share (MidiaResearch, 2020)

Around the 2010s, the attention started to turn again to a new industry: on-demand streaming of music.
This started a major transition in the last 10 years. The financial sources of the music industry changed rapidly
as seen in fig. 2.2. In 2017, streaming accounted for 62% of music revenue in the US, compared to only 15% in
20121. Nowadays, the number of distributors to choose from is reduced to only 5 Big Tech platforms. Together
they form over 80% share of all subscribers. Clearly, streaming royalties are an increasingly important piece of
income for musicians. However, these increased revenues are not felt in the pockets of musicians, but rather
in major label and platform profits.

This history shows a trend towards centralization of power in the music industry. The future of artists is
in the hand of a few large corporations, as they have monopoly power over them. This comes with several
issues, as explained in the next section.

2.2. Intermediaries take a large share
Artists publishing their content on a music streaming service such as Google Music, Spotify and Apple Music
receive low compensation, because the intermediaries take a large cut in revenue, typically between 25 and
40 percent (see 2.2). The top 5 streaming services, controlling 80% market share (MidiaResearch, 2020), have
the power to ask high subscription fees. The Big Tech corporations behind these services are also tightly
intertwined with dominant labels. For instance, Aguiar and Waldfogel (2018) notices that “major record labels
have substantial ownership stakes in Spotify”.

According to IFPI (2020), 2019 became the first year in which digital streaming is the single biggest source
of revenue for the music industry globally. At the same time, streaming services take a large cut in revenue,
and artists are having a harder time making money from music. According to investigations by aCooke (2018)

1http://www.riaa.com

http://www.riaa.com

2.3. Financial transparency 7

Music release Label cut Platform cut Artist/band cut
Streams per month
to earn min. wage
(solo musician)

TIDAL Unsigned 0% 40% 60% 117,760
Signed 55% 50% 20% 353,280

Spotify Unsigned 0% 40% 60% 287,574
Signed 55% 25% 20% 862,722

Apple Music Unsigned 0% 40% 60% 200,272
Signed 55% 25% 20% 600,816

Google Play Unsigned 0% 40% 60% 217,752
Signed 55% 25% 20% 653,256

This thesis challenge Unsigned 0% 0% 100% <75,000

Table 2.2: Overview of revenue cuts (estimated) on streaming platforms, with a note on the streams/plays per month that an artist should
have in order to make a minimum wage. The challenge of this thesis is to liberate artists from depending on intermediaries that take a
large revenue cut. Sources: Trichordist (2014), DigitalMusicNews (2018).

and ReCode (2015), the revenue cut of Apple Music and Spotify is between 25% and 30%. An additional
problem is opacity: streaming deals on these platforms remain behind closed doors.

For these reasons, massive audiences are needed to generate sustaining profits. An investigation by
Bloomberg2 shows that 152,094 Spotify subscriber streams generate only $100 on average for artists. Con-
sequently, only 0.733% of all acts generate enough revenue for an artist to make a living (Ingham, 2018). The
International Federation of the Phonographic Industry states that as of 2018 there exists a "value gap" in dig-
ital music streaming, meaning a “mismatch between the value that some digital platforms [...] extract from
music and the revenue returned to the music community–those who are creating and investing in music”
(IFPI, 2018).

2.3. Financial transparency
The actual overhead of the music industry is unclear, as the flow of money towards artists is either not public
or lacks detail and explanation. Contract details and royalty payments are vague on purpose. This is part of
the business model of music stakeholders. According to Music (2015), “Despite streaming services paying the
same percentage of their revenue (70 percent) to rights holders as an iTunes download sale, low payouts and
many intermediaries are creating concerns” (Music, 2015).

The complex flow of intermediaries results in slow and inaccurate royalty payments. As reported by BBC
(2019), Eminem’s publisher sued spotify because he has never been properly paid for songs that are streamed
on Spotify for billions of times. The court mentioned that the streaming service “[...] lacked the infrastruc-
ture needed to make sure songs are licensed and musicians are paid”. Royalty payments are generally also
unnecessarily time-consuming: it can take 6 to 12 months to arrive at artists (Music, 2015).

It appears that a large amount of royalty revenue flows outside of the artists, in a “black box” (Music, 2015).
The reason is that there is no industry-wide system for declaring rightful owners of music. This problem is
even more significant as there is no incentive for the major labels and major streaming services to improve
this situation. These companies deliberately obscure royalty processing, or use outdated and unnecessarily
complex systems.

All in all, the flow of royalty payments must be modernized and made more transparent. There are techno-
logical challenges, such as the lack of a global, industry-wide and decentralized system for registering music
rights. However, even more problematic is the imbalanced landscape of music royalties: streaming compa-
nies and labels do not benefit from making their royalty payments more transparent.

2.4. Monopoly power of centralized platforms
The infrastructure of current internet applications are increasingly moving towards platformization. In the
context of music, subscriptions and purchases are majorly happening on a few central platforms, such as
Spotify or Apple Music. In essence, platforms are taking control of “the surface on which the market exchange
take place” (Andersson Schwarz, 2016) with digital distribution and network effects enabling an increasing

2https://www.bloomberg.com/opinion/articles/2017-09-25/the-music-business-is-more-unfair-than-ever

https://www.bloomberg.com/opinion/articles/2017-09-25/the-music-business-is-more-unfair-than-ever

8 2. Problem description

centralization of power. This phenomenon is related to IT gatekeeping: tying access of content to a specific
internet service. An example of this is the release of the album The Life of Pablo in 2016, which was contracted
to only be played on one platform, Tidal.

The latest movement in platform accumulation is the monopolization of data. Large scale of data about
user interactions with the platform forms a ‘monopoly of knowledge’ (Innis, 2007). The power of platform
companies are raising because platforms, in general, tend towards monopoly (Srnicek, 2017).

In relation to gatekeeping, platforms are now given the task to perform moral judgments on content, for
example whether to censor a certain artist. This is controversial as these judgments are no longer in the
hands of democracies but rather in the hands of companies. Recent issues exist such as the disappearance of
Li Zhi3, who published songs about democracy and social issues in China. All of China’s main streaming sites
removed his songs. In 2019, Apple Music also removed content from their platform by singer Jacky Cheung,
who referenced the tragedies of Tiananmen Square in his songs4

Aside from the monopoly on the side of the market towards the seller, we see another problem as well.
Monopsony power means that a dominant buyer has the power to push prices down with suppliers. In the
context of music, this means that artists have little choice over which platform to publish their music on,
because of the dominance of one platform. A few major players in the music industry together form an
oligopolistic market. Monopsony power in this area can lead to squeezing the producer side. An example
of monopsony power is an event that happened in 2014, between Amazon and Hachette. Amazon, having a
large market share on e-books, used its commercial muscle to demand a larger cut of the price of Hachette
books it sells. This included for all Hachette books “preventing customers from being able to pre-order titles,
reducing the discounts it offered on books and delaying shipment” (Ellis-Petersen, 2014).

Along the same lines, the music streaming oligarchs can use their commercial muscle to demand low pays
to artists. Spotify founder and CEO Daniel Ek declared to its investors that the increase in interactions with
its in-house curated playlists “puts Spotify in control of the demand curve” 5.

2.5. Profit-driven recommendation engines
The Big Tech music companies recommend content that best fits their business model, which may be con-
trary to what is most useful to their customer. The companies can promote or dis-promote content by their
choosing. This shows “curatorial power”: the ability to advance own interests by organizing and prioritizing
content (Prey, 2020).

Musicians and record labels are increasingly dependent on landing on Spotify-curated playlists. For ex-
ample, a study done by the European Commission shows that, for a track to land on the Spotify-curated
playlist ‘Today’s Top Hits’, it will see an increase of $163,000 in revenue (Aguiar & Waldfogel, 2018). 99 of
the top 100 playlists are curated by the streaming company. So its recommendation algorithms and playlist
curation systems are highly influential.

A notable problem with this situation is that the inner workings of the recommendation algorithms are
opaque to the user. These algorithms, fed by user interaction data, are in some extend also a black box to
the company, as they are built using machine learning technologies. However, as noted by (Gillespie, 2014),
the impression that algorithms are objective is a “carefully crafted fiction”. Namely, they are altered based
on company strategies. Companies are not obliged to explain their algorithms. In the context of recommen-
dations, this leads to a “threat of invisibility": the problem of content regularly disappearing (Bucher, 2018),
a phenomenon which is out of the hands of the artist, because the artist lacks knowledge in the algorithm
workings. Frustrating for artists and labels is also the vagueness of getting playlisted: it is unclear why “[...] a
particular track was placed, or replaced, on a playlist” (Prey, 2020).

On the other hand, if the ‘frontpage’ playlists, such as ‘Today’s Top Hits’, are manually created by a person
or company, we run into another issue. This is depicted in a recent book by Heuvelings (2020). The author
had the job of maintaining several high-demand playlists on Spotify, with millions of monthly listeners. This
gave her substantial power but also huge pressure from artists and labels, demanding their work to be visible
on her playlists. She was threatened by some of these parties as well, after which she decided to leave Spotify.
This autobiography shows the immense pressure on playlist curation, when this is done by one company or

3https://www.independent.co.uk/news/world/asia/tiananmen-square-china-li-zhi-singer-disappears
-anniversary-protests-a8940641.html

4https://hongkongfp.com/2019/04/09/apple-music-china-removes-jacky-cheung-song-reference-tiananmen
-massacre/

5https://investors.spotify.com/financials/press-release-details/2019/Spotify-Technology-SA-Announces
-Financial-Results-for-Fourth-Quarter-2018/default.aspx

https://www.independent.co.uk/news/world/asia/tiananmen-square-china-li-zhi-singer-disappears-anniversary-protests-a8940641.html
https://www.independent.co.uk/news/world/asia/tiananmen-square-china-li-zhi-singer-disappears-anniversary-protests-a8940641.html
https://hongkongfp.com/2019/04/09/apple-music-china-removes-jacky-cheung-song-reference-tiananmen-massacre/
https://hongkongfp.com/2019/04/09/apple-music-china-removes-jacky-cheung-song-reference-tiananmen-massacre/
https://investors.spotify.com/financials/press-release-details/2019/Spotify-Technology-SA-Announces-Financial-Results-for-Fourth-Quarter-2018/default.aspx
https://investors.spotify.com/financials/press-release-details/2019/Spotify-Technology-SA-Announces-Financial-Results-for-Fourth-Quarter-2018/default.aspx

2.6. Research question 9

person. It can make or break an artist, so there will be large (financial) pressure from labels or artists towards
playlist maintainers, making the music industry unfair for smaller artists with less power.

2.6. Research question
All in all, the main issue is as follows. The music industry is imbalanced: it suffers from centralized power
that is in the hand of a few labels and Big Tech corporations. Our research question thus follows:

How can we design and implement a music streaming service that distributes the power from one authority
to its users?

3
State of the Art

In this chapter we describe existing algorithms, protocols and applications in computer science, which try
to solve, or give an alternative for, the centralized power in Big Tech, and more specifically in digital audio
streaming. We inspect full solutions in the form of distributed applications, and techniques which solve
subproblems, such as decentralized file sharing protocols.

For an application to evolve without a company or a responsible group of people, decisions need to be
made on protocol or feature additions and changes. We inspect the state-of-the-art technologies and organi-
zational theories which enable autonomous communities to solve these problems by organizing themselves.

3.1. Decentralized Autonomous Organizations
As an alternative organizational framework for distributing money and music, we examine a recent concept
and technology: Decentralized Autonomous Organizations (DAO). A DAO is “an entity that lives on the in-
ternet and exists autonomously, but also heavily relies on hiring individuals to perform certain tasks that the
automaton itself cannot do” (Buterin, 2014). It is not owned by a single person or legal entity. It should also
not require a specifically specified party to operate. For example, it should not depend on a single server
or database, but rather have flexibility in adopting resources. As such we say it lives autonomously. Buterin
(2014) also notes that a DAO should have internal capital: ‘some kind of internal property that is valuable in
some way, and it has the ability to use that property as a mechanism for rewarding certain activities’. A DAO
is non-profit by nature, as there is no legal owner of the system.

Important groundwork around the theory and implementation of a DAO has been done by Jentzsch
(2016). He notes that corporations originally work through people only, and this has two flaws: “People
do not always follow the rules, and they do not always agree what the rules require”. His paper illustrates
a method that allows creating and maintaining organizations in which “(1) participants maintain direct real-
time control of contributed funds and (2) governance rules are formalized, automated and enforced using
software”.

3.2. AI DAO
Central to this thesis is the real-world experimentation of an intelligent decentralized system: a system that is
on the boundary of DAO and AI technologies (see 3.1). This means humans are still involved with performing
some tasks and governing, but an intelligent agent can perform other decision making tasks. This may be the
holy grail in automation. In our context, we envision human tasks to be: creating music and giving feedback
on music (through e.g. donations). ’Robot tasks’ could be e.g. (1) processing an automatic subscription
payment system, in which all user money is divided fairly over the artists every time iteration; Or (2) tracking
connectivity stats of other users; Or (3) determining trust of authenticity and identity of artists.

Much is still unknown in this research area. This thesis aims to create more knowledge on a ’AI DAO’ by
attempting to build a proof-of-concept of such intelligent system.

11

12 3. State of the Art

Figure 3.1: Decentralized Autonomous Organization, in comparison to other organizational structures. In a DAO, activity is performed
by humans at the edges, automation at the center. It is an interplay in which robots and humans perform tasks. Source: Buterin (2014)

3.3. Decentralized music distribution technologies
Multiple decentralized audio distribution and streaming applications exist. Examples are Audius (Rumburg,
Sethi, & Nagaraj, 2018), Musicoin 1 and Opus Audio (Jia et al., 2016).

Audius (Rumburg et al., 2018) presents a decentralized protocol for audio content, which aims to improve
payouts to artists and its transparency. It contains a token economy with a transparent payout system for the
artists, and a user-operated, distributed network for metadata and content. In addition, it has a governance
system like a DAO, in which users can decide on changes to the protocol by democratic voting. Its protocol
is established around the ideology of disintermediation: “Intermediaries should be removed when possible;
when necessary, they should be algorithmic, transparent, and verifiably accurate” (Rumburg et al., 2018). It
uses IPFS (Benet, 2014) for storage of audio content, meaning it relies on voluntarily-hosted high-performant
servers.

Opus Audio (Jia et al., 2016) is a decentralized music-sharing platform and proposes a solution for music
ownership registration on a blockchain structure. It has a running distributed audio file sharing system using
the Inter-Planetary FileSystem designed by Benet (2014) (see 3.6). It contains a decentralized and fully auto-
mated system for purchasing access to music, which works as follows. Opus stores encrypted audio files on
a swarm of connected nodes. The decryption keys and files hashes are stored in a smart contract (see 3.4).
Using cryptocurrency, users spend their funds on these smart contracts, to unlock access to audio files.

Musicoin is a blockchain platform without intermediaries that focuses on income for independent artists.
It uses smart contracts and cryptocurrency to show transparency in payments (see 3.4). This payment struc-
ture ensures that each contributor in the network is rewarded, and that artists receive a stable income based
on the Universal Basic Income ideology. Not all of their architecture is decentralized; they use centralized
registration system for artists and listeners. They pay artists using their $MUSIC currency, of which the value
may be highly unstable.

None of the state-of-the-art decentralized audio streaming technologies show a running, fully decen-
tralized infrastructure with stable income for artists. All of these systems have in common that they save
metadata and identifiers of audio files on a blockchain, and save the audio files in an off-chain database
using IPFS (Benet, 2014). This makes these solutions reliant on people voluntarily running IPFS content
nodes (servers hosting the audio files). In a fully decentralized network, every participant should have the
same role, meaning that every node both uploads and downloads content, and it should not be reliant on
external servers. Most decentralized systems use their homebrew cryptocurrency to pay artists, instead of a
well-established currency or stablecoin.

3.4. Financial transparency in the music industry
As described in sec. 2.3, there is a serious issue in the music industry affecting artists globally: the (by design)
inaccurate, complex and slow royalty payments. There are existing decentralized frameworks and protocols
to solve this problem.

Payments of royalties to artists can be described in transparent, public and immutable records on a
blockchain. In addition, smart contracts can be used to automate payments (Buterin et al., 2014). Smart
contracts are self-executing (non-ambiguous) and self-verifying (guaranteeing its statements). In the music

1http://musicoin.org/

http://musicoin.org/

3.5. Decentralized application frameworks 13

Figure 3.2: Trustchain-Superapp
overview

Figure 3.3: Tribler desktop interface, showing the bandwidth incentive system overview

industry context, a smart contract can be used for transparent, immutable and automatic payment distribu-
tion of royalties. This technique was shown in practice in 2017, when Imogen Heap released the song ‘Tiny
Human’ (Heap, 2017). Its distribution of payments to the makers and recorders was written in a smart con-
tract, in the form of a record on the Ethereum blockchain. When a user downloads the corresponding track
and makes the payment using cryptocurrency, the forwarding details of the payment are located within the
blockchain, and executed as declared on the smart contract.

3.5. Decentralized application frameworks
The TrustChain superapp (Skala, 2020) is a framework for implementing mobile Android decentralized ap-
plications. It allows for storing append-only immutable data on TrustChain (Otte, de Vos, & Pouwelse, 2017)
and spreading this data in a phone-to-phone serverless network. It follows the concept of super apps (Huang,
2019), meaning that it contains many mini-apps which use the same networking interface. The Superapp is
an Android app as seen in fig. 3.2. Its mini-apps implement decentralized democratic voting and has bitcoin
payment integration, among other features.

In the context of DAO, the TrustChain-Superapp contains a mini-app for decentralized governance using
voting (see fig. 3.4). In this voting app, any participant of the organization can create a proposal for the
community to vote on. Once a preset voting threshold is reached, the proposal is automatically accepted or
denied. Bookkeeping of these proposals is done using the TrustChain distributed ledger technology (Otte et
al., 2017). This voting app is an important basis for democratic decision making, but does not include code
changes directly after proposals are accepted, so lacks app evolution. This protocol is based on proof-of-
identity instead of proof-of-stake, as no tokens are involved.

3.6. Decentralized content delivery networks
A fully decentralized audio streaming service requires sharing and streaming audio files over a network of
nodes in which any participant can start and run a node. Well-established examples of such technologies are
BitTorrent and IPFS.

BitTorrent (Cohen, 2002) is an open peer-to-peer file sharing protocol. It invented by Bram Cohen, and
has generated a massive influence on network traffic on the Internet since its release. Today, it is still the
most popular peer-to-peer protocol for sharing data. In 2019, BitTorrent was measured to generate 2.5% of
all download and 24.6% of all upload bandwidth (Marozzo, Talia, & Trunfio, 2020). It went through many
iterations and improvements. It has a large community, with over 3K repositories on GitHub related to the

14 3. State of the Art

Figure 3.4: Distributed democratic voting mini-app, showing proposals

technology. Furthermore there are a few companies maintaining clients (such as https://bittorrent.com
and https://www.utorrent.com).

In essence, BitTorrent makes use of seeding while downloading: this means that when multiple clients
download a file, they simultaneously share pieces of this file with the other downloaders. This results, with
well connected and performing peers, in fast downloads.

There are no differences between hosters and downloaders. All participants have the same capabilities,
so every user of the network can both download and upload content. A challenge of the BitTorrent protocol
without extensions is incentivizing participants to host files. There are multiple proposed solutions for this,
discussed in 3.7.

The Inter-Planetary FileSystem, introduced by Benet (2014), is a distributed peer-to-peer file sharing sys-
tem in which any person can start a node and start uploading and downloading files. Protocol Labs2, the
team behind this technology, was founded in 2014 by Juan Benet. As of 2020, the team has grown globally to
members from 19 countries, with substantial investments. However, there has not been large-scale adoption
of this technology yet.

At its core, IPFS maintains a global key-value store for all files (and file parts). This is in contrast to BitTor-
rent, which works with torrent swarms and trackers. IPFS uses an efficient content addressing mechanism.
Another feature is built-in file de-duplication. Additionally it supports public file history bookkeeping.

End-users of content stored on IPFS can access content without supporting the network, so there is the
possibility of free-riding. In addition, there are no direct (financial) incentives to run an IPFS node, other than
to help the network and to host content. When comparing IPFS and BitTorrent, a notable difference between
IPFS and BitTorrent is that IPFS makes a distinction between file-hosting nodes and end-users (which only
download files). BitTorrent does not make a distinction between these actors. In BitTorrent, every participant
of the network has the capabilities to both upload and download content. Therefore a BitTorrent network
using DHT is typically more decentralized than IPFS.

IPFS uses a global file index using a hash tree, which means that every two file that produce the same hash
are stored on the same index. This leads to de-duplication, which may result in better use of disk space, in
comparison to BitTorrent.

2https://protocol.ai/

https://bittorrent.com
https://www.utorrent.com
https://protocol.ai/

3.7. Incentives for file hosting 15

3.7. Incentives for file hosting
In a DAO, the party responsible for hosting and spreading of files is not well-defined. To tackle the tragedy
of the commons, entities should be incentivised just enough for the system to be sustainable and usable, but
no more. An example incentive system is bandwidth tokens (de Vos & Pouwelse, 2018) as part of the Tribler
system.

Tribler (J. A. Pouwelse et al., 2008) is a peer-to-peer system to share, download and stream multimedia. It
has implementations for desktop environments and an Android prototype. It makes use of BitTorrent for file
transfer and adds anonymization techniques on top of it. In addition, it makes use of its bandwidth tokens:
an incentive system to increase cooperation between users, in order to achieve high availability of downloads.
In essence, it subtracts tokens for downloading content from peers and rewards tokens for helping peers. An
overview of the Tribler desktop interface can be seen in fig. 3.3.

4
Design

In this section we present the design of our software application MusicDAO. MusicDAO is a mobile music
streaming and discovery application, with peer-to-peer payment to artists in the form of donations and sub-
scriptions. The MusicDAO is fully decentralized by design. This means there are no intermediaries, third par-
ties or proprietary servers needed. It is a first step towards a fully autonomous and zero-cost music streaming
industry. It is non-profit by design, as there is no single leader or company controlling it. Instead, its users
determine its future. All users of the app form a community to share audio tracks and transfer money using
mobile devices. Any user can join this community, publish their musical works and receive money from its
listeners. All participants cooperate in the network, which makes it self-scaling by design.

The overall design of the system can be seen in fig. 4.1. This describes the interaction between the dif-
ferent components, libraries and frameworks. The following sections explain the designed features, compo-
nents and design choices.

The main goal of MusicDAO is: Distributing the power in the music industry, from central-
ized platforms to listeners and artists. Meaning: liberating artists from their dependence
on money-grabbing platforms, so that they receive 100% of the subscription/donation
money from their listeners.

Main goal of our system

4.1. Zero-cost autonomous music industry
We design a system that takes important steps towards a zero-cost autonomous music streaming indus-
try, with no intermediaries. In this utopia, intermediaries that add no real value to the industry receive no
money. Artists receive near-100% of all income as they are the core contributors to the industry. Anyone

Figure 4.1: Architecture overview, with in green the external libraries. MusicService is the central component in our system

17

18 4. Design

Figure 4.2: Traditional (centralized) Internet service
infrastructure

Figure 4.3: Peer-to-peer network of phones, as in Mu-
sicDAO

in the community of artists and listeners can create and share music without contacting a party for a con-
tract or allowance. An open protocol over which money and music is exchanged, can be used with different
applications, so that users have a choice of user interface.

Real-world thriving examples such as Linux or Wikipedia are driven by community and effort instead of
profit. Consensus is reached through discussion instead of through pyramid schemes. We envision a similar
transition for the digital music industry. The next sections will explain the design of our proof-of-concept of
MusicDAO, which aims to be the first piece for reaching a fair music industry.

4.2. Phone-to-phone network
Traditional Internet services are built around a single server or a set of servers (fig. 4.2). Instead, MusicDAO
is designed to have a network consisting of only mobile phones (fig. 4.3). Key challenges to establishing and
maintaining such a network are: discovering other devices, network connectivity, longevity and scalability.

Every device that wants to participate, will try to find other devices to join the network. Every device
also keeps track of a routing table, containing public IP addresses of connected and connectable peers, in-
cluding latency for each peer. This routing table is inspired by the routing table implemented by BitTorrent
DHT (Loewenstern & Norberg, 2008). To discover an initial list of devices, we use a bootstrap server, which
keeps track of other devices on the network to connect with. A bootstrap server should not be necessary when
there are devices on the same Local Area Network that can introduce a new device to the network. However,
the network of MusicDAO will be sparse at the start. After a few devices are discovered, the bootstrap server
can be disregarded, as new devices are then trivially found via neighbor search.

As there will be no central server, each device acts as both a client and server. As devices may be behind
routers or other Network Address Translators (NATs), establishing a direct connection between devices is not
trivial. To achieve this, we use network address translation (NAT) traversal. NAT traversal is a set of methods
used to establish a connection between devices which have no static, public IP address.

To support a healthy evolution of the network, every device will maintain a list of connected devices.
Devices will send periodic keepalive messages to its connected peers to track which are alive and reachable.
By doing this, devices can decide which peers are healthy connections. This list should grow to a few dozen,
so that there are always connectable peers.

4.3. Phone-to-phone censorship-free network
We design a network which only consists of mobile phones. Every phone cooperates by storing, sharing and
validating content. Each mobile phone has access to the same functionalities. The reason for this topology is
to have no single, powerful party or centralized server, and that scales naturally. With the latter is meant: the
computational power and bandwidth capacity grows with the amount of devices requiring these resources.

A proof-of-concept will show an important step towards mobile infrastructure for the common good: a
system in which participants do not lose money and power to greedy intermediaries. Instead, they will benefit
from cooperation. This concept aims for absolute fairness, controlled by the community from the ground up
instead of dictated top-down. All money going into the system is divided over the participants, following rules
written in code that are defined by the community.

A key attribute of the network is censorship-resiliency. That means that no single authority (company, in-

4.4. Open protocol and artist freedom 19

stitution or government) can remove tracks, or prevent devices from participating in the network. Censorship-
resiliency is an important requirement for the system because of the issues described in 2.4. Attempting
to build a resilient system while using Internet technologies results in a few key challenges as identified by
J. Pouwelse (2012) and et al. (2014). To articulate these challenges, we specify a powerful adversary which
has the goal to reduce the freedom of a user of the system. The adversary is known to manage the following
attacks:

• Eavesdropping.

• Killing Internet switches.

• Direct censorship: installing malware or spyware.

• IP Filtering: block or filter content by restricting access of a specific IP address.

• Content filtering: removing or hiding specific content from several hosts.

• Confiscating devices: manually take some devices down (a small proportion of the whole network).

The following paragraphs explain how MusicDAO is designed to defend against these attacks.
Eavesdropping: In a censorship-resistant network, devices talking to each other must trust the network

infrastructure to be free of eavesdropping. Preventing eavesdropping can be achieved using end-to-end en-
cryption. However, an adversary may take down certain networking infrastructure to prevent communication
altogether (Killing Internet switches).

Killing Internet switches: An alternative approach is to establish direct communication between devices,
which means that data is transmitted device-to-device, without the use of a central access point such such as
a router. We use BlueTooth LTE (Townsend, Cufí, Davidson, et al., 2014) as a back-up strategy for when Inter-
net traffic is being eavesdropped or when Wi-Fi is killed. This is a widely supported technology in present-day
mobile phones and has existing integration into the framework by Skala (2020).

Direct censorship is another challenge in designing an application. Direct censorship means that there is a
piece of code installed on-device that tracks user activity, without the user knowing this. Our solution is two-
fold. Firstly, the ecosystem is by default open source. Secondly, the evolution of the code-base is determined
by a governance system and majority voting. This means that proposals to change the code-base will need to
be voted on by its community. This idea is inspired by previous work from Jentzsch (2016).

Content filtering is not a threat to MusicDAO, because it uses an immutable data structure (see 4.8 for
details). This means, in current context, that it is not possible to change or remove any (meta)data of music
tracks after they have been published. In addition, multiple copies of track files are available through content
duplication. The system uses simple duplication heuristics, such that all objects that a phone receives is
stored in cache. This strategy also defends against confiscating devices and IP filtering. When an adversary
takes down, or blocks, a small portion of devices from the network, there will still be back-ups available on
the other devices.

4.4. Open protocol and artist freedom
The design of our system contains both an open protocol and an application for the end-user. This is inspired
by the ideas from Masnick (2019), who describes that the Internet should go back to open protocols instead
of platforms, and that there should be a clear distinction between applications and protocols, so that users
have the choice between different applications. Then, every application can have its own strategy of content
moderation. This should result in more competition to “[...] provide better services that minimize the impact
of those with malicious intent, without cutting off their ability to speak entirely” (Masnick, 2019).

In our context, we envision different applications using the same streaming, discovery and payment pro-
tocol, but with each application having strategies for content filtering and user interfaces. This way, music
can not be censored in a centralized manner. Moderation of content happens on the side of the application,
so that the user is in control of the settings of moderation and we do not lose freedom of speech or data
resiliency.

4.5. End-to-end music delivery model
In contrary to the current music publishing situation, dominated by IT gatekeeping and oligarchs as visual-
ized in fig. 2.1, we present the desired situation in fig. 4.4. This shows the liberation for artists in publishing

20 4. Design

Figure 4.4: Desired music publishing flow using a distributed network

Figure 4.5: Release blocks structure as seen on
TrustChain

Figure 4.6: KeywordSearchMessage object sent over
IPv8 in MusicCommunity

their content, and the reduction of single-point-of-failure risks. In this system, artists are free in what they
upload. In addition, their content can not be taken down by any authority unless there are no participants in
the network. The discovery of content is done using open source, transparent systems and listening data is
saved and processed locally.

To achieve this situation, a main component of our system is the storage of metadata and audio files for
playlists. We design an abstract model for the structure of this metadata, so that the artist is free in the way
to release music content. The artist may publish tracks as part of a single, an EP, an album or any other
structured list of tracks, as a Release object.

A Release object contains a list of tracks that are published by a clearly identifiable artist or group of artists.
It is modeled as shown in fig. 4.5. Release objects are shared between peers in the network. By discovering
many of those objects, a user can see and browse through them to select a track to play. A Release object
merely contains metadata of the tracks. We design the network to have a separate channel for downloading
the track files. This is to enable fast discovery and searching of Releases, as Release objects have a small byte
size.

4.6. Identification of participants
The MusicDAO allows any person to participate, and start publishing or listening to music. It requires a per-
missionless infrastructure, in which artists can be identified. As we design a system that is fully decentralized,
we cannot use a central database to record user identities. Therefore every user generates a unique identity
to be used in the network, and must be able to give proof of this identity. We use a public key infrastructure
(PKI) which achieve these goals. Every user stores their private and public key on their device, and only share
their public key. The keypair has a mathematical property that allows verification of messages that are signed
with a private key. By comparing the public key of a peer with their signed message, anyone can verify the
authenticity of the message.

In the context of MusicDAO we use this PKI to proof ownership of Release objects. All Release objects are
signed using the owner’s private key and the signature is added to the object. Any user receiving this object
can verify its authenticity.

We choose to use the public key infrastructure as implemented in the TrustChain-Superapp (Skala, 2020).

4.7. Establishing trust and reducing sybil attacks 21

This abstracts network identifiers such as IP addresses, which may change over time; so it provides a unique
identity per Android phone.

4.7. Establishing trust and reducing sybil attacks
In any permissionless infrastructure, legitimacy of parties is not defined by a centralized authority. To still
establish trust in the legitimacy of artists, we use the TrustChain DLT (Otte et al., 2017). Using this technology,
we record the history of uploaded tracks in an immutable and transparent way. In essence, every artist adds
Release blocks to its personal chain, and due to the interlinking mechanism of TrustChain, it is not possible
to hide parts of this history. Every participant can view this timestamped history, as it is public by design.

This way, an application can inspect the legitimacy of an artist. For example, if an application finds a
song X, published by both participant A and B, but the song published by participant A was published later,
it can be concluded that A is more trustworthy than B, as B may have copied the song. This system can also
be extended trivially to user ratings, or other interactions between parties, to achieve better measurements
of trust. This distributed datastore of immutable and transparent histories then becomes a measure against
Sybil attacks (Douceur, 2002) and artist impersonation.

4.8. Distributed storage
Central to our system is sharing downloading and storage of audio files and Release objects (see 4.5). To de-
sign a system which has no middlemen or regulators for publishing Releases, and has no central control, a
distributed storage system is required. This storage system should have the following properties: immutabil-
ity (data cannot be tampered with), resiliency (data should be available as long as users want it) and rigorous
duplication (all objects should be saved on multiple machines). Distributed ledger technology (DLT) allows
for these properties, so we design our system with a DLT as a major component.

One implementation of this technology is TrustChain (Otte et al., 2017) which allows for recording trans-
actions between peers in a linearly scaling public ledger. Every peer has its own immutable and public
blockchain which shows its history of transactions with others. This way we can establish trust in a cer-
tain party. In our context, we can use this mechanism to estimate trust in artists by inspecting their public
history of uploads. We choose TrustChain because of its scalability, its trust mechanism, and because it has
a native implementation for Android, as described in 3.5. In addition, this implementation allows for offline
communication, so users can download and explore new content using Bluetooth or LAN.

4.9. Peer-to-peer music sharing
To be able to have low latency for discovering and playing music tracks, while using no central nor high-
throughput servers, the network demands participants to upload content continuously. We design the app
to, by default, use the network capabilities of the mobile device to upload content as much as possible. This
is constrained by networking hardware, data subscription plans and other software running on the phone.

The peer-to-peer file sharing protocol BitTorrent is suitable to share audio files in MusicDAO. We make
BitTorrent a design choice as it does not require synchronizing with a global data store, in contrary to IPFS.
This means we can build a metadata store independently from BitTorrent (for example, using TrustChain as
explained in 4.8). BitTorrent also has stable implementations for Android.

4.10. Distributed search
For searching content we use introduce our simple distributed algorithm. Pseudocode of this algorithm is
shown in alg. 1. It asks peers around for content tagged with some keyword. When a peer finds a match on
their local database, it sends this Release object to the original asking peer. Otherwise it forwards the query
to their neighbours, after reducing the time-to-live property by 1. The messages stop being forwarded once
their time-to-live property hits below 1. The structure of search messages are shown in fig. 4.6.

This algorithm is inspired by the more general Gnutella search and retrieval protocol (Kronfol, 2002).
Gnutella is widely used and has over a million users.

Fig. 4.7 shows a visualization of execution of the algorithm in a small network. Participant A wishes to
find a set of results R for query q , so it initiates a search query. Firstly it inspects its local database. Because
there are |R| = 0 results, it sends a query to its neighboring peers (B and C). The peers depicted in grey finds
|R|1 results; they send their result back directly to A and do no other action. Other peers forward q to its
neighbors, reducing qt t l by 1. Time-to-live hits 1 when arriving in F,G,H so the search terminates.

22 4. Design

Algorithm 1 Distributed algorithm for remote search

function DISTRIBUTEDSEARCH(query, ttl, maxPeers, minResults) .Device initiates the search
results← localSearch(query) . Filter local database
if |results| ≥minResults then

return results
end if
origin ← myAddress() . Address of the device initiating the search
for i ← 1, maxPeers do

peer ← peers[i] . Select a random neighbor
sendQuery(origin, peer, query, ttl)

end for
end function
function ONQUERY(origin, peer, query, ttl) . This is called when a query is received

if t t l ≤ 0 then
return

end if
t t l ← t t l −1
results← localSearch(query)
if |results| ≤ 1 then

return sendResults(origin, results) . Send the results back directly to the origin
end if
for i ← 1, maxPeers do

peer ← peers[i]
sendQuery(origin, peer, query, ttl)

end for
end function

Figure 4.7: Search algorithm execution example: node A initiates a search query

4.11. Transparent money flow 23

Figure 4.8: Money flow: current situation (simplified)

Figure 4.9: Money flow: desired situation

4.11. Transparent money flow
Figures 4.8 and 4.9 visualize, in a simplified fashion, the difference of how money flows in the current situation
and in MusicDAO. It shows that, when intermediaries are cut from the flow, artists will have a higher income
for the same fees from the listener. Streaming services and record holders introduce many overhead costs.
Our system allows artists to publish their songs without the need to contact a label. The biggest difference in
income will be seen for independent artists, as streaming services gives particularly low payouts for unsigned
artists.

As we are designing a system with no intermediaries, it should be possible to give money directly to artists.
Cryptocurrency allows for peer-to-peer payments which achieve this goal, so we use this in the MusicDAO.
Cryptocurrency payments will be used for two different functionalities: a user can send a donation to an
artist, or a user can pay artists using a monthly subscription system. This subscription system pays artists
that the user listened to, using the Artist Income Division Algorithm (see 4.11.2).

In the desired money flow, we have a Fig. 4.9 shows another component: an automated and transparent
payment division system. In practice, this should be an algorithm running locally on the machine of the user
which calculates how much money should go to each of the shareholders of a particular song. Currently,
record holders have this task, but there exists no transparent system for this, so they can give low payouts
to its artists. We design the transparent payment system to be an immutable record on a distributed ledger,
on which a specification of the exact shares per artists are written down. This can be implemented using
TrustChain blocks (Otte et al., 2017).

We choose to use Bitcoin as a cryptocurrency as it has shown to be a fully peer-to-peer, secure and popular
payment system, and it does not rely on any third parties to run. It also allows for making a experimentation
environment without any high-throughput external servers.

4.11.1. Wallet
Cryptocurrency implementations allow for private/public key-pairs which can be interpreted as a kind of
wallet; the funds can only be unlocked by a holder of the private key. In the case of MusicDAO we design
the app to include a wallet for every user. To receive money, every artist should share their public key to all
of their listeners. To achieve this, the public key of their cryptocurrency wallet is included as a property of
the Release objects (see 4.5). As there are no institutions or banks involved in storing money, users will be
required to keep their private key safe.

4.11.2. Artist Income Division Algorithm
To provide a stable income for artists, in the form of reoccurring payments, we design the Artist Income Divi-
sion Algorithm. This algorithm calculates how subscription money is split into payments to artists. The user
can enable a periodic payment. This money is then divided over the artists the user listens to, in proportion
to the amount of interaction with each artist. Interaction can be measured in e.g. time listened, plays or feed-
back in the form of likes. The details of this division is explained in the implementation section of AIDA (see
TODO).

24 4. Design

4.12. Content popularity gossiping algorithm
In order to present users with content that is reachable (downloadable), we track content healthiness. Content
healthiness is the amount of peers that have and upload some specific piece of content. In the context of
music this is the amount of uploaders for a music release (see fig. 4.5). This idea is heavily influenced by the
swarm health terminology as part of BitTorrent, which interprets the number of seeders and leechers.

Our gossiping algorithm used for spreading information about content healthiness is presented in alg. 2.

Algorithm 2 Gossiping algorithm for content popularity

localDatabase ← Map(key: item, value: health)
function GOSSIP(localDatabase, peers, t, margin)

repeat Every t ms
for healthItem in localDatabase do

if timestamp ≤ timestampNow − margin then
localDatabase->remove(healthItem)

end if
end for
healthItem←pickRandom(localDatabase) . Pick a random item
orderDesc(localDatabase) .Order based on health
healthItem2←pickFirst(localDatabase)
peer←pickRandom(peers)
sendGossipMessage(peer, list(healthItem, healthItem2))

until end
end function
function ONGOSSIPMESSAGE(items) .

localDatabase->overwrite(item)
end function

4.13. Scalability
MusicDAO is scalable by using a scalable accounting system (see 4.8) and distributed file system (see 4.9).
Every device records its own history. When a device wants to publish music, it only transacts with one other
party, to sign the metadata record. As such, there is no global consensus, nor a global ordering of transactions,
so all records are processed in parallel.

In addition, by using BitTorrent as the streaming/content layer, any participant can publish a torrent with
music, without needing to interact with any other peer.

Finally, the transaction system, Bitcoin, may become a bottleneck in scalability. It requires global consen-
sus and a voting process for every transaction. However, as of the time of writing, there is no mature and more
scalable alternative as peer-to-peer payment system technology. We do not consider centralized technologies
as that would concentrate power, in contrary to the aim of this thesis.

5
Implementation

We implemented our system on a network of phones, with no servers. Every mobile phone cooperates by
sharing music and establishing trust. This means that the computational capacity grows with the amount of
users, as does the demand on such capacity. The system is built along the ideologies of a DAO: there is no
single party, server or database that the system requires to operate. As such, it is a non-profit system, where
the artists keep all revenues. In MusicDAO, mobile phones are able to transfer money and music. In this trust-
less system, trust in other parties is established through proofs of identity using cryptography, and publicly
verified append-only history data. It is resilient against censorship-attacks: it cannot be taken down by any
government or institution. MusicDAO runs on Android 5.1.1 and above, meaning there are 13,734 Android
devices supported1.

5.1. Zero-server infrastructure
The system described in the Design chapter is implemented on a network of phones, with no servers. This
results in a fully distributed, leaderless organization. Every mobile phone cooperates by sharing music, trans-
acting money and establishing trust. This means that the computational capacity grows with the amount of
users, as does the demand on such capacity. The system is built along the ideologies of a DAO: there is no sin-
gle party, server or database that the system requires to operate. As such, it is a non-profit system, where the
destination of money flow is decided by its users, instead of by a single organization. In MusicDAO, mobile
phones are able to transfer money and music. In this trust-less system, trust in other parties is established
through proofs of identity using cryptography, and publicly verified using append-only history data.

5.2. Phone-to-phone Android application
MusicDAO is an Android application which runs on any Android device running version 5.1.1 or above. It
is implemented as a ‘mini-app’ of the TrustChain Superapp (Skala, 2020). This follows the concept of super
apps (Huang, 2019). The app is published on the Android Play Store2 and runs on Android 5.1 and above.
Its code is publicly available3. As programming language Kotlin is selected, as it is the preferred language for
Android development4. Moreover the underlying technology stack is also written in Kotlin, so this allows for
neat integration. This section describes the implementation choices, usage of external libraries and presents
the user interface of MusicDAO. The main interfaces of the app can be seen below (figs. 5.1, 5.2 and 5.6). An
overview of the structure of the code can be seen in the package diagram in fig. 5.8.

Features overview
Our Android app contains the following features:

• Defining album/single/EP releases using metadata, and sharing those with peers; Sharing of your audio
tracks with peers; Immutable storage of music metadata and cryptographic identification of artists.

1According to Google Play Console, 17-02-2021.
2https://play.google.com/store/apps/details?id=nl.tudelft.trustchain
3https://github.com/Tim-W/trustchain-superapp
4https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build
-experiences-on-Android-Play.html

25

https://play.google.com/store/apps/details?id=nl.tudelft.trustchain
https://github.com/Tim-W/trustchain-superapp
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html

26 5. Implementation

Name Version Usage
JLibtorrent 1.2.10 Peer-to-peer file distribution
TorrentStream-Android 2.7.0 Video streaming library
ExoPlayer 2.10.5 Android multimedia player
BitcoinJ 0.15.7 Java bitcoin interface
XChange 5.0.1 Crypto/USD price conversion

Table 5.1: Notable libraries used

Figure 5.1: The playlist overview screen,
which is the entrance screen

Figure 5.2: Playlist fragment, showing all
tracks of one Release

Figure 5.3: Sending a tip to an artist or
band

• Streaming music over BitTorrent; Prioritization algorithm to minimize streaming latency; Caching au-
dio files and metadata.

• Browsing playlists; Local and remote keyword search for music.

• Mobile bitcoin wallet implementation; Peer-to-peer donations to artists using Bitcoin.

• Content sorting algorithm based on swarm health.

The following was not implemented:

• Artist Income Division Algorithm.

Apart from the Android SDK and the TrustChain Superapp, the main libraries that are used are shown in 5.1.
In the following sections we explain the details of implementing the aforementioned features in a top-down
overview, starting with the interfaces.

5.3. Peer-to-peer content discovery
Peer-to-peer content metadata discovery is implemented by a push-based content spreading mechanism. All
devices have an internal clock. Every i seconds, they send a random block of music metadata to a random
peer. We analyze the impact of i on content discovery in chap. 6.

The entry point of the app is the playlist overview screen (see 5.1). It is the screen that is first shown
upon starting the MusicDAO. Here the user is presented a list of playlists, with title and author, loaded from

5.4. Music streaming mechanism 27

local disk and from peers. In our current implementation, each Playlist fragment corresponds to exactly one
Release block (see 4.5). MusicDAO does not support user-made playlists as of the time of writing. The playlists
are rendered in real-time based on TrustChain data. This means: during browsing, newly clickable playlists
show up instantly once they are discovered from peers. The playlists are sorted on their torrent swarm health
in ascending order. Caching is used for fast browsing and music playback. All torrent metadata and all track
files received from peers are cached on the Android phone.

5.4. Music streaming mechanism
To achieve fast buffering of music, we implemented a priority system for tracks and for parts of tracks (chunks).
In essence, the player prioritizes chunks that the user is currently interested in, by actively asking peers to
send the corresponding chunks that are necessary to play the selected section of the track. In addition, the
selected track is given a higher priority over other tracks in the playlist. This uses the piece priorities system
in libtorrent, which range from 1 (normal) to 7 (highest) (see libtorrent Manual5). By default, the first couple
of chunks of each track are given a high priority, to reduce the chance of buffer underflow, so that the user
can start streaming early.

Playing music is implemented using ExoPlayer (5.1). This music player library is suitable as it allows for
playing tracks that are partially loaded, which enables streaming. When the user selects a playlist to browse
and play, the fragment in fig. 5.2 is displayed. Here, the user can select a track to play. It presents its list of
tracks and other metadata, such as the title and artist(s). For each track the file size is displayed, and a loading
indicator on the right side. This shows, in real time, how much of the track is downloaded. In the example of
5.2, the first track is fully loaded. The track player, shown on the bottom, interacts directly with the tracklist
and the selected track. It shows which track is selected and whether it is currently playing or buffering.

5.5. Peer-to-peer financial infrastructure
Each device participating in the MusicCommunity is given a private/public wallet identity upon installation
of the MusicDAO. The wallet interface (fig. 5.4) shows synchronization status of the RegTest network (see 5.9).
Once the wallet is fully synchronized with the blockchain, the private key and balance are displayed as shown
in fig. 5.5.

Upon browsing a playlist, a donation button is displayed as shown in fig. 5.6. When pressing this button,
the user can select an amount and make a direct donation to the artist or band, in the form of a bitcoin
transaction from their wallet. The user enters a value in USD and the corresponding amount in bitcoin is
calculated and shown when this field is edited. This is implemented using an external trading platform API67.
After confirmation, the transaction is registered on the RegTest network (see 5.9).

Side note: querying a trading platform API for currency rates makes the app reliant on an external server
to run, which is not the aim of this thesis. However this function can trivially be removed without further
implications on the system. The current system contains the function to improve the user experience.

5.6. Networking
We implement audio track uploading, downloading and streaming using JLibtorrent8, an implementation of
BitTorrent. Immutable and public storage of metadata is implemented with TrustChain (Otte et al., 2017).

5.6.1. Release creation and sharing
Peer-to-peer content discovery is implemented by a push-based content spreading mechanism. All devices
have an internal clock. Every i seconds, they send a random block of music metadata to a random peer. We
analyze the impact of i on content discovery in chap. 6.

To create and share music content, a user can create a Release object using the dialog shown in fig. 5.7.
There are two options for creation: the user either selects local audio tracks or pastes a magnet link. Af-
terwards, the user adds metadata describing the contents and submits the Release. In the background this
creates a torrent file, which is stored on the mobile device. Finally, by using the computed infohash and file
list, the magnet link of the torrent file is created and added to the magnet field of the Release block.

5https://www.libtorrent.org/manual-ref.html#file-format
6https://github.com/knowm/XChange/releases/tag/xchange-5.0.1
7https://www.binance.com/en/trade/BTC_USDT
8https://github.com/frostwire/frostwire-jlibtorrent

https://www.libtorrent.org/manual-ref.html#file-format
https://github.com/knowm/XChange/releases/tag/xchange-5.0.1
https://www.binance.com/en/trade/BTC_USDT
https://github.com/frostwire/frostwire-jlibtorrent

28 5. Implementation

Figure 5.4: Synchronizing with the Bit-
coin RegTest environment blockchain

Figure 5.5: Wallet overview and balance
after synchronizing

Figure 5.6: Sending a tip to an artist or
band

We run a bittorrent tracker, which maintains a list of seeders for the torrents that are created and shared
in MusicDAO. To keep the network decentralized, seeders may also be found using a distributed hash ta-
ble (Distributed Hash Table, 1981-2019). In addition, the app uses the local peer discovery (LPD) (8472, 2015)
functionality of BitTorrent. This allows for finding peers and transmitting torrent pieces over a LAN, resulting
in fast transmission and low latency.

5.6.2. Content seeding
Seeding of content is implemented using a simple continuous mechanism. The ContentSeeder class runs
a background thread which seeds all local torrents, with an upper threshold T . This is set to T = 10. The
ContentSeeder uses a last-in-first-out heuristic: Only the top T most recently created/received torrent files
are seeded.

5.7. Identity and authenticity
Every device participating in MusicDAO has a unique identity. MusicDAO implements the public-key infras-
tructure as described in 4.6 using the identity system proposed by Skala (2020). This uses the widely used
industry standard Curve25519 cryptography system. Using this system, it is computationally infeasible to ob-
tain the private key from a public key. For simplicity in implementation, we assume that every device in the
network is an abstraction of a unique artist.

All immutable music release blocks are assigned an identity of the creator using a public key. Every device
running the MusicDAO will receive a public/private key-pair upon first launch.

Currently there is no multi-signature support implemented. This means that in the case of a group pub-
lishing a Release, there is only one public key representing the whole group. Every artist, and every unique
collaboration between artists should generate their own key-pair to describe ownership of the Release.

5.8. Peer-to-peer keyword search
The app allows users to search for music content remotely using keyword search. The search function tries
to find matches locally, and if there are only a few found, it will try to ask for content from peers. We imple-
mented algorithm 1 for this functionality. The current implementation uses only a simple filter, which checks
if the keyword is contained in the metadata of the music release.

When the user performs a search, the local database is filtered first to find matches. If there are unsat-
isfactory results, it sends a search message (see 4.6) to a few random peers. This asks neighbors to inspect

5.9. Peer-to-peer payments to artists 29

Figure 5.7: Dialog for creating and pub-
lishing a new Release

Figure 5.8: Package diagram showing the interaction with external libraries and
TrustChain Superapp packages

their local database to find matches for the same query. If the peer finds a match, it sends the corresponding
results directly back to the original query initiator. To disallow packages from endlessly being forwarded on
the network we use a time-to-live property. For details, refer to algorithm 1.

5.9. Peer-to-peer payments to artists
Our system contains peer-to-peer payments where 100% of money goes to artists. We created a public Bitcoin
RegTest environment9 to test peer-to-peer Bitcoin donations and payments. This creates a new ‘clean slate’
Bitcoin blockchain and allows for full control over the chain and miners. This enables a test environment
that is useful for experiments, as we can tweak the block generation speed and keep track of all transactions
registered on the blockchain.

Each device must be synchronized with the network in order to make payments. A background thread
of MusicDAO establishes and maintains communication with bitcoin nodes, so that it does not interrupt the
user experience. The progression of synchronization can be seen in the wallet interface. Synchronization
with the RegTest network is done using a single bootstrap server, which is a hard-coded address in the app.
This is necessary for running on a test net, as it will take an infeasible amount of time to guess the address of
a running Bitcoin node, with only a few nodes. In a real-world situation, bitcoin nodes should be found by
querying peers for bitcoin node addresses.

In the current system, when a user makes a donation, this transaction is atomic and can only go to one
wallet. An automatic splitting system between different artists of one group or band has not been imple-
mented yet.

5.10. Gossip protocol for content popularity
5.11. Quality assurance
As mentioned in the introduction, the goal of the implemented work is to be the first steps towards a full
robot economy. Aside from being a functional real-world application, MusicDAO also presents an DAO AI
framework to create other robot economy applications, beyond the scope of music. Experimentation in other
domains allows to gain a further understanding of the developing science of the robot economy.

As the framework presented in MusicDAO is an important milestone towards the robot economy, the code
reusability is of great importance. Therefore we used best-practice code quality assurance approaches such

9https://developer.bitcoin.org/examples/testing.html#regtest-mode

https://developer.bitcoin.org/examples/testing.html#regtest-mode

30 5. Implementation

Package/class Line coverage
MusicService.kt 15% (15/95)
MusicBaseFragment.kt 50% (1/2)
catalog 24% (35/142)
dialog 20% (24/130)
ipv8 81% (57/70)
net 90% (27/30)
player 0% (0/50)
playlist 9% (19/203)
util 60% (42/70)
wallet 0% (0/100)

Table 5.2: Code coverage overview

as continuous integration, code linting and pull request reviews. These best practices are widely used in the
software industry.

We use a continuous integration (CI) environment, run by Github Actions10. GitHub Actions is a mature
CI system, used by e.g. the Google Cloud Platform. Within our CI environment, we use automated tests and
code linting. Unit tests are written using JUnit 411 and the mocking library Mockk12. The code coverage of
these unit tests can be seen in 5.2. Code linting is performed using KtLint13.

Code coverage is measured by Android Studio 414. The majority of uncovered code contain user interface
interaction and networking callback logic. Code coverage could have been improved by introducing Android
instrumented tests. These are tests that run on an Android device or emulator so that user interaction flows
can be tested. However, we chose to not implement this as these type of tests can not be run in our continuous
integration environment, and tweaking the CI for support of this would be a non-trivial task.

MusicDAO runs on Android 5.1.1 and above, and as such supports 13,734 different Android devices15.
During the implementation phase we ensure that it runs well on different screen sizes and Android versions,
by running it on 20 different Android devices. To gain a further understanding of device compatibility and
bug hunting, we make use of an online crash reporter (fig. 5.9). Firebase Crashlytics registers app installs
and crashes in real-time, which we use during the experimentation of MusicDAO. It shows details of each
application crash for all users (see fig. 5.9). Using this, a full stack trace can be inspected remotely for each
crash. In addition it helps with gaining insight in various performance metrics for certain types of Android
devices.

10https://github.com/features/actions
11https://junit.org/junit4/
12https://mockk.io/
13https://github.com/pinterest/ktlint
14https://developer.android.com/studio
15According to Google Play Console, 17-02-2021.

https://github.com/features/actions
https://junit.org/junit4/
https://mockk.io/
https://github.com/pinterest/ktlint
https://developer.android.com/studio

5.11. Quality assurance 31

Figure 5.9: Firebase Crashlytics crash reporter; this figure shows the crashes over time

6
Evaluation

We evaluated the viability of our DAO as a Big Tech alternative. An ideal evaluation would be by measuring
the impact of a large-scale (millions of users) and long term deployment of MusicDAO in terms of artist in-
come and artist happiness. However, the time and scale required is not feasible in the scope of this thesis.
Instead, we deploy MusicDAO on a smaller scale (20 Android devices, 11 users). We measure performance of
money transaction flow, music streaming and search latency in supervised and unsupervised experiments.
These measurements determine the responsiveness of our infrastructure in small network sizes. By com-
paring latency and throughput in several network sizes, we can make conclusions of the performance of our
infrastructure in larger networks.

In an unsupervised experiment, all test subjects are given the MusicDAO application and are asked to
stream music and send money to artists, but with no specific rules or guidelines. We have no control over the
actions of these test subjects.

In multiple supervised experiments, we use 10 Android devices that are under our control. we measure
latency and throughput of music data and money transfers, and analyze the impact of network size on these
measurements.

6.1. Unsupervised experiment: public release
MusicDAO was released publicly on the Google Play store and 11 test subjects were given the task to download
music and send donations to artists. Upon installation and first running MusicDAO, it sends a request in the
background to our Bitcoin node, asking for 10 coins in starter money. The responsiveness of our Bitcoin node
for transferring starter money is analyzed in 6.1.1.

6.1.1. Automated starter money transactions
We analyze the responsiveness of our bitcoin node by obtaining two datasets, and inspecting their correlation
in terms of timing of events.

The two datasets are:

1. App installations per day, as measured by the Google Play console.

2. Transactions from our Bitcoin node with a value of 10 coins, scraped from our blockchain.

When there are x app installations on some day, there should be y x transactions outgoing from our Bit-
coin faucet. In the graph shown in fig this is not always the case. On 19-01-2021 there was (at least) one
transaction missing. This was due to a server outage where the Bitcoin faucet was running. There are also
cases in which there are transactions but no installations. This may be due to multiple app installations from
one device on the same day (which is measured as one by the Google Play store console) or app installations
outside of the Play store.

6.1.2. Donation money flow
We observe that artist income is

33

34 6. Evaluation

Figure 6.1: Graph showing the relationship between faucet transactions of 10BTC and app installations. Every app installation should
correspond to at least one faucet transaction.

Figure 6.2: Artist income (cumulative) over time and block creation

Figure 6.3: Transactions (cumulative) over time and block creation

6.2. Supervised experiments 35

Figure 6.4: Average time spent per download stage. Measured by 20 runs in total, in two different network configurations.

The datasets used to create the plots shown in figs. 6.2 and 6.3 are received by scraping blockchain block
data from our Bitcoin node. Fig. 6.2 shows the relation between created blocks and money transacted per
block (cumulative). We observe that, during the timeline of the release experiment, nearly 500 BTC has been
received by artists.

Note that the Bitcoin blockchain only contains timestamps for blocks, and no timestamps for individual
transactions. This means we could not analyze transaction confirmation time in our unsupervised experi-
ment, as this requires the timestamp of creating a transaction. However, prediction and analysis of confir-
mation times in Bitcoin have already been performed multiple times in recent literature (Kawase & Kasahara,
2017) (Koops, 2018).

6.2. Supervised experiments
During several supervised experiments, we were in control of a network of 10 Android devices, of which 5
virtual emulators and 5 real world devices. By performing several experiments, throughput and latency of
several actions in this network is analyzed. Performing measurements in different network sizes (2 up to 10
devices), enables making predictions of the scalability of MusicDAO.

6.2.1. Downloading and streaming
6.4 shows the download time of each stage in the bittorrent downloading process. By running 10 runs per
network configuration, we inspected the effects of a bittorrent tracker on throughput and handshake time.
The 4 different download stages marked in this figure are as follows.

1. Time to receive metadata (including establishing handshake)

2. Time to fill stream buffer

3. Time to download first track

4. Time to download full album

The measurements show that a BitTorrent tracker significantly reduces transfer times, for a small BitTor-
rent swarm with 5 seeders. The largest difference is in the fetching metadata stage, during which the device
under test must find and connect with seeders. Discovering seeders over DHT requires asking multiple peers,
and as such requires more time and messages before the download can start. Once the download starts, the
runs using a tracker also reach significantly higher throughput, as the tracker assists the device in finding

36 6. Evaluation

Figure 6.5: 5 traces of download throughput, downloading an album of around 38 Mbs. Measured with Nokia 7.

more seeders and healthier seeders. We found that the major factor slowing down download stages when us-
ing DHT only is the NAT puncturing stage, where devices try to connect to each other when there are one or
more NAT devices in between. As expected, finding peers over DHT is also slower than via a tracker, however
the time taken to create a handshake during NAT puncturing has a much larger effect on the peer-to-peer
connecting time (the time taken to create a reliable connection for data transfer).

6.5 shows 5 traces of downloading a 38 Megabyte album. The red line shows the moving average over
these 5 runs. The slow-start nature of BitTorrent can be observed here. Roughly the first 5 seconds are used
for fetching the BitTorrent metadata (see also 6.4).

The datasets used to create the plots shown in figs. 6.2 and 6.3 are received by scraping blockchain block
data from our Bitcoin node. Fig. 6.2 shows the relation between created blocks and money transacted per
block (cumulative). We observe that, during the timeline of the release experiment, nearly 500 BTC has been
received by artists.

Note that all devices evaluated in experiments 6.4 and 6.5 use Bittorrent Local Peer Discovery. This means
that some of the data transfers may be over local area network, which reaches considerably higher throughput
than regular transfers over TCP across NATs.

6.2.2. File headers and BitTorrent piece ordering
The streaming algorithm implemented and evaluated uses the BitTorrent priorities system. The first x = 5
pieces at the selected portion of the file (by default, the start of the file) have a higher priority than the other
pieces. However, even though some pieces A have higher priority than other pieces B , BitTorrent does not
guarantee that all a ∈ A are received earlier before any b ∈ B . Therefore, the actual ordering of the received
pieces is non-deterministic. The simple heuristic used in the streaming algorithm is: start playing the file
when 30% has been downloaded; but this does not always work and this leads to inconsistent stream buffer
times. Additionally, we use the assumption that the header of the audio file is at the first few bytes of the file,
but this is not always true.

There is significant ongoing research related to peer-to-peer streaming in literature that can be used to
improve our streaming algorithm (Erman, Vogeleer, & Popescu, 2008) (Akkanen, 2017).

6.2.3. Content discovery
Fig. 6.6 shows measurements of an Android device discovering content, after running MusicDAO for the first
time. More specifically, it is a measurement of music metadata, received as TrustChain blocks. All participat-
ing devices are configured as follows: Every device sends a random block to a random peer every 5 seconds.
A Nokia 7 Android device ran the MusicDAO in an idle state for 5 minutes. The app measured the amount of
content metadata discovered every 2 seconds.

Mathematical model
For evaluating content discovery over time, we compare three different experiments with a mathematical
model for expected discovered items over time.

6.2. Supervised experiments 37

Figure 6.6: Measurements of content discovery: releases discovered after a fresh installation. n: network size (amount of Android devices)

• Gossip interval t = 5 seconds

• Total items to discover: R = 50

Every time interval, all devices send one music block to a random neighbor. As such, the expected amount
of blocks received in one interval is 1. When receiving a music block, the chance that it is a block that has not
been received before is

R − r

R

with r ≤ R the amount of items received so far. It follows that the expected value for the cumulative amount
of unique items discovered after x iterations is

E [R] = R(1− (
R −1

R
)x)

where

x = 1

t

This expected value E [R] over time is plotted in 6.6 as Model.
As every device sends one item per time interval to a neighbor, the gossiped items per time interval is

equal to network size n. This means message complexity M is equal to network size:

M =O(n)

Every device participating in gossiping sends 1 message and receives, on average, 1 message back. So the
expected messages to process is E [M] = 2 per iteration. Therefore the message complexity for a single device
is

M =O(1)

This means that the network size does not affect the message processing workload of each device, and makes
the algorithm highly scalable.

In 6.6 we can see a correlation between model and experiment for network sizes n = 2 and n = 4. For n =
10 the experiment and model correlate until 3 minutes into the experiment. The reasons for this are for now
not clear. More investigation and more experiments on larger networks are necessary to make conclusions.

38 6. Evaluation

Figure 6.7: Search latency of performing keyword search

6.2.4. Random access latency
Random access latency of metadata is evaluated through measuring search latency. Search latency is the
round-trip time between initiating keyword search and receiving metadata for the release. During this exper-
iment, the content that was searched for was present in all devices except the one under test. The distributed
search algorithm (alg. 1) is used with the following parameters.

• maxPeer s = 20

• t t l = 1

This means that a maximum of 20 neighbors are contacted when performing a search, and that search is
not recursive; meaning only neighbors are contacted (not neighbors of neighbors).

For two different situations, 10 runs are done and the latency and average latency are plotted in 6.7. We
observe that for these 20 runs, latency is < 1s. Another observation is: increase in network size (10 versus 2)
does not negatively affect latency. Current music streaming systems have a search latency of roughly < 2s in
ideal situations.

It should be noted that message complexity of the search algorithm grows exponentially with the value
of time-to-live (ttl). For time-to-live T and the maximum number of neighboring peers to ask P , the amount
of messages for a single search is pT for p ≤ P . This leaves a message complexity of O(P T). This could be
improved by using a different distributed data structure that is optimized for search, such as a balance tree or
a distributed hash table.

6.3. Devices behind NATs
During experimentation, some of the Bittorrent traffic on Android devices were blocked by Network Address
Translators (NATs). MP3 transfers over Bittorrent were slowed down by this. The NAT Port Mapping Protocol
(NAT-PMP) was used to be able to establish connections between different devices. NAT-PMP establishes
connections using port scanning and port forwarding. However, this is a lengthy process: we observed that
establishing such a connection usually takes more than 2 minutes. Analyzing and improving this process
should be investigated in future distributed systems research.

6.4. Transaction fees
We use Bitcoin as peer-to-peer electronic cash system. Bitcoin uses transaction fees for every transaction.
In our unsupervised experiments with MusicDAO, we observed an average transaction fee of 0.00003778
coins. As such we cannot say that artists receive 100% of the donation money from users, but rather roughly
99.9996%. This fee is calculated dynamically. It is based on the size of a transaction, and network conditions
such as congestion.

6.5. Missing features 39

Our framework for the robot economy does not explicitly state the type of currency used. In MusicDAO,
Bitcoin can be trivially swapped for any other currency as long as that currency uses a digital peer-to-peer
public key infrastructure with public wallet addresses. As such, a different crypto-currency with no transac-
tion fees (such as Nano (LeMahieu, 2018)) can be used.

6.5. Missing features
• Artist Income Division Algorithm

6.6. Scalability
We presented an infrastructureless network of phones that together form a fully operating application. Dur-
ing supervised experiments, a network size of up to 10 phones was used. Now we present our expectations of
scalability beyond 10 active devices.

As every device cooperates in the network by being both an uploader and downloader for content, the
network size should not affect download speeds for users. The bandwidth, processing power and storage
capacity of the application should naturally grow with the amount of users. An important note is that we
do not take into account free-riders (peers that use the network but do not deliver resources) or adversaries
(peers that perform attacks such as network flooding or sybil attack).

TrustChain DLT is highly scalable as it does not require global consensus. Instead, it uses a single blockchain
per user instead of a single global blockchain.

6.7. Bitcoin node
We made use of a bitcoin node, running on a dedicated server continuously throughout the experimentation
phase.

6.8. P2P bootstrap problem
Our goal, as described in the Design section, was to create a phone-only network. This is not fully accom-
plished as we use a bootstrap node to tackle the peer-to-peer bootstrap problem. As recognized by Wolinsky,
Juste, Boykin, and Figueiredo (2010), the peer-to-peer bootstrap problem is the problem of finding peers in a
P2P overlay network, when there are no connected peers to begin with. This is a widely known, yet unsolved
problem for any peer-to-peer network, and it is also relevant in MusicDAO.

It must be noted that a bootstrap node is not necessary when you can connect to a peer that is already on
the MusicDAO network, for example via a local area network or Bluetooth. Moreover, a bootstrap node can
be discarded once the bootstrapping procedure is successful.

6.9. Battery usage
The challenge of any peer-to-peer mobile app is battery usage, as it should be connected and contribute to the
network as much as possible to optimally support other peers. To do this, TrustChain Superapp sends regular
keep-alive messages in order to track the status of peers. To do this, the Superapp runs in the background as
an Android service. Therefore it can still be used when the app is closed. The downside is that this appears
to have a major effect on battery usage, as found in previous experimentation by Skala (2020). He found that,
during a 10 hour experiment, when a Google Pixel phone runs the app in the background and is connected
to 20 peers, its battery consumption is roughly 10 times higher than normally.

Battery usage could be improved by adjusting the peer-to-peer connectivity protocol of IPv8, such as by
reducing the interval of keepalive messages. This requires further investigation and more research.

7
Conclusion and Future Work

This thesis presents a novel framework for building a robot economy in software. This framework allows for
designing and implementing software for the common good: software that (1) handles financial transactions
in a fair way (2) as decided by democratic engagement, (3) runs transparently and autonomously, (4) is open
to any participant (permissionless), (5) is decentralized and leaderless, (6) supports a self-evolving codebase,
and finally (7) can make intelligent decisions on its own using AI.

This thesis presents a music streaming alternative for the Big Tech industry: we implemented our frame-
work in order to build a fully working decentralized music streaming, publishing and discovery mobile app
with peer-to-peer donations. In this proof-of-concept called MusicDAO, we applied the theory of the robot
economy in software to an industry of which the core contributors (artists) suffer majorly from centralization
on the Internet: the music industry. Most music streaming platforms take a 20-40% cut of music revenue;
MusicDAO takes 0%. MusicDAO implements 1, 3, 4 and 5 of the key features of a robot economy in software
(see above).

MusicDAO is completely free of label and platform intermediaries taking large revenue cuts. It forwards
> 99.99% of all music revenue to artists. All money flow is public and transparent. Artists using our DAO
can be independent and self-publishing. Apart from the music platform oligarchy, it also surpasses the label
oligarchy as it requires no music label to publish music.

MusicDAO implements a peer-to-peer audio streaming algorithm, which is able to stream any BitTorrent
audio swarm. Its buffer loading time does not reach industry standards yet but this can be improved by more
optimized pre-fetching and piece ordering algorithms.

7.1. Generality: beyond music
The framework presented in this thesis can be applied to many other domains beyond music. It can trans-
form Internet platforms, or even complete value chains that currently have unfair or opaque money flows.
One may think of a production and sales chain with no retail cut, or a video publishing network with a sub-
scription model without intermediaries. This thesis aims to be a step into an evolving research direction,
infrastructure for the common good: infrastructureless software that works in favor of its user community
instead of companies or profit.

7.2. Future research directions
Content moderation is a key ingredient of any Internet platform. In MusicDAO, any music that is published is
automatically admitted to the network. Therefore the network does not automatically remove any duplicates
(copies), illegal remixes or other illegal audio. Using DAO and intelligent robots, a system can be created in
which robots moderate content using AI, while humans democratically vote on the rules for content.

Ongoing research into Self-Sovereign Identity (SSI) can fix part of this problem: SSI can create a certain
passport for content creators, with which creators can prove their identity and thus ownership of certain
content.

As we only implemented a proof-of-concept for a part
Streaming income is only a part of revenue from music. MusicDAO can be extended to include other

revenue flows to artists, to make also those incomes higher and more transparent for artists. Possibilities are

41

42 7. Conclusion and Future Work

e.g. live concert tickets, merchanidise or physical audio sales.
A robot economy is highly susceptible for the problem of determining responsibility when things go wrong.

For example, a software bug may occur or a robot can make an unexpected monetary transaction. This chal-
lenge requires research into new theories and ideas in the context of law and philosophy for the robot econ-
omy.

Bibliography

8472, T. (2015). Bittorrent local service discovery. Retrieved September 14 2020, from http://www
.bittorrent.org/beps/bep_0014.html

aCooke, C. (2018). Dissecting the digital dollar. London.
Aguiar, L., & Waldfogel, J. (2018). Platforms, promotion, and product discovery: Evidence from spotify playlists

(Tech. Rep.). National Bureau of Economic Research.
Akkanen, J. (2017, September 19). Continuous scheduling for peer-to-peer streaming. Google Patents. (US

Patent 9,769,255)
Andersson Schwarz, J. (2016). Mastering one’s domain: some key principles of platform capitalism.
Arduengo, M., & Sentis, L. (2020). The robot economy: Here it comes. International Journal of Social Robotics,

1–11.
BBC. (2019). Spotify sued over ’billions of eminem streams’. Retrieved October 25 2020, from https://

www.bbc.com/news/technology-49436077
Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561.
Bucher, T. (2018). If... then: Algorithmic power and politics. Oxford University Press.
Buterin, V. (2014). Daos, dacs, das and more: An incomplete terminology guide. Ethereum Blog. Retrieved

November 4 2020, from https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an
-incomplete-terminology-guide/

Buterin, V., et al. (2014). A next-generation smart contract and decentralized application platform. white
paper, 3(37).

Cohen, B. (2002). Bittorrent protocol specification v1.0. WWW, June.
de Vos, M., & Pouwelse, J. (2018). A blockchain-based micro-economy of bandwidth tokens. CompSys 2018.
DigitalMusicNews. (2018). What streaming music services pay (updated for 2020). Retrieved 29 Octo-

ber 2020, from https://www.digitalmusicnews.com/2018/12/25/streaming-music-services
-pay-2019/

Distributed hash table. (1981-2019). Retrieved September 14 2020, from https://encyclopedia2
.thefreedictionary.com/Distributed+hash+table

Douceur, J. R. (2002). The sybil attack. In International workshop on peer-to-peer systems (pp. 251–260).
Ellis-Petersen, H. (2014). Amazon and hachette end dispute on ebooks. The Guardian. Retrieved from

https://www.theguardian.com/books/2014/nov/13/amazon-hachette-end-dispute-ebooks
Erman, D., Vogeleer, K. d., & Popescu, A. (2008). On piece selection for streaming bittorrent. In Fifth swedish

national computer networking worshop (sncnw2008).
et al., D. F. (2014). Bypassing censorship: A proven tool against the recent internet censorship in turkey. In

2014 ieee international symposium on software reliability engineering workshops (pp. 389–394).
Gillespie, T. (2014). The relevance of algorithms. Media technologies: Essays on communication, materiality,

and society, 167(2014), 167.
Heap, I. (2017). Blockchain could help musicians make money again. Harvard Business Review, 5.
Heuvelings, D. (2020). Auxiety (1st ed., Vol. 1). The address: Das Mag Uitgeverij B.V.
Huang, A. (2019). Super app or super disruption? Retrieved September 21 2020, from https://home.kpmg/

xx/en/home/insights/2019/06/super-app-or-super-disruption.html
IFPI. (2018). Global music report 2018. International Federation of the Phonographic Industry London.
IFPI. (2020). Ifpi global music report 2020 - the industry in 2019. International Federation of the Phonographic

Industry London.
Ingham, T. (2018). The odds of an artist becoming a “top tier” earner on spotify today? less than 1%. Music

Business Worldwide, 25.
Innis, H. A. (2007). Empire and communications. Rowman & Littlefield.
Jentzsch, C. (2016). Decentralized autonomous organization to automate governance. White paper, Novem-

ber.
Jia, B., Xu, C., Gotla, R., Peeters, S., Abouelnasr, R., & Mach, M. (2016). Opus-decentralized music distribution

using interplanetary file systems (ipfs) on the ethereum blockchain v0. 8.3. Tech. Rep., 2016. Accessed:
Jan. 2017.[Online]. Available: https://icosbull

43

http://www.bittorrent.org/beps/bep_0014.html
http://www.bittorrent.org/beps/bep_0014.html
https://www.bbc.com/news/technology-49436077
https://www.bbc.com/news/technology-49436077
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://www.digitalmusicnews.com/2018/12/25/streaming-music-services-pay-2019/
https://www.digitalmusicnews.com/2018/12/25/streaming-music-services-pay-2019/
https://encyclopedia2.thefreedictionary.com/Distributed+hash+table
https://encyclopedia2.thefreedictionary.com/Distributed+hash+table
https://www.theguardian.com/books/2014/nov/13/amazon-hachette-end-dispute-ebooks
https://home.kpmg/xx/en/home/insights/2019/06/super-app-or-super-disruption.html
https://home.kpmg/xx/en/home/insights/2019/06/super-app-or-super-disruption.html

44 Bibliography

Kawase, Y., & Kasahara, S. (2017). Transaction-confirmation time for bitcoin: A queueing analytical approach
to blockchain mechanism. In International conference on queueing theory and network applications
(pp. 75–88).

Koops, D. (2018). Predicting the confirmation time of bitcoin transactions. arXiv preprint arXiv:1809.10596.
Kronfol, A. Z. (2002). Fasd: A fault-tolerant, adaptive scalable distributed search engine (Unpublished doctoral

dissertation). Master’s Thesis http://www. cs. princeton. edu/akronfol/fasd.
LeMahieu, C. (2018). Nano: A feeless distributed cryptocurrency network. Nano [Online resource]. URL:

https://nano. org/en/whitepaper (date of access: 24.03. 2018).
Loewenstern, A., & Norberg, A. (2008). Dht protocol. Retrieved October 21 2020, from http://www

.bittorrent.org/beps//bep_0005.html
Marozzo, F., Talia, D., & Trunfio, P. (2020). A sleep-and-wake technique for reducing energy consumption in

bittorrent networks. Concurrency and Computation: Practice and Experience, 32(14), e5723. Retrieved
from https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5723 doi: 10.1002/cpe.5723

Masnick, M. (2019). Protocols, not platforms..
Meier, L. M., & Manzerolle, V. R. (2019). Rising tides? data capture, platform accumulation, and new monop-

olies in the digital music economy. New Media & Society, 21(3), 543–561.
MidiaResearch. (2020). Music subscriber market shares q1 2020. Retrieved from https://www

.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020
Music, R. (2015). Fair music: Transparency and payment flows in the music industry. Rethink Music.
Otte, P., de Vos, M., & Pouwelse, J. (2017, 09). Trustchain: A sybil-resistant scalable blockchain. Future

Generation Computer Systems. doi: 10.1016/j.future.2017.08.048
Pouwelse, J. (2012). Media without censorship (censorfree) scenarios. Retrieved 09 November 2020, from

https://tools.ietf.org/html/draft-pouwelse-censorfree-scenarios-02
Pouwelse, J. A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., . . . Sips, H. J. (2008). Tribler: a social-based

peer-to-peer system. Concurrency and computation: Practice and experience, 20(2), 127–138.
Prey, R. (2020). Locating power in platformization: Music streaming playlists and curatorial power. Social

Media+ Society, 6(2), 2056305120933291.
Rayna, T., & Striukova, L. (2009). Monometapoly or the economics of the music industry. Prometheus, 27(3),

211–222.
ReCode. (2015). Here’s what happens to your $10 after you pay for a month of apple music.
Rumburg, R., Sethi, S., & Nagaraj, H. (2018). Audius: A decentralized protocol for audio content.
Skala, M. (2020). Technology stack for decentralized mobile services (Unpublished master’s thesis).
Srnicek, N. (2017). Platform capitalism. John Wiley & Sons.
Stiglitz, J. (2019). Market concentration is threatening the us economy. Project Syndicate.
Townsend, K., Cufí, C., Davidson, R., et al. (2014). Getting started with bluetooth low energy: tools and tech-

niques for low-power networking. " O’Reilly Media, Inc.".
Trichordist, T. (2014). The streaming price bible – spotify, youtube and what 1 million plays means to you! Re-

trieved 22 October 2020, from https://thetrichordist.com/2014/11/12/the-streaming-price
-bible-spotify-youtube-and-what-1-million-plays-means-to-you/

Wolinsky, D. I., Juste, P. S., Boykin, P. O., & Figueiredo, R. (2010). Addressing the p2p bootstrap problem for
small overlay networks. In 2010 ieee tenth international conference on peer-to-peer computing (p2p)
(pp. 1–10).

http://www.bittorrent.org/beps//bep_0005.html
http://www.bittorrent.org/beps//bep_0005.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5723
https://www.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020
https://www.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020
https://tools.ietf.org/html/draft-pouwelse-censorfree-scenarios-02
https://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/
https://thetrichordist.com/2014/11/12/the-streaming-price-bible-spotify-youtube-and-what-1-million-plays-means-to-you/

	Introduction
	Monopolization on the Internet
	Towards a robot economy
	Centralization of power in the music industry
	Proposed solution: MusicDAO
	Experimentation and evaluation

	Problem description
	History in the industry: centralization of power
	Intermediaries take a large share
	Financial transparency
	Monopoly power of centralized platforms
	Profit-driven recommendation engines
	Research question

	State of the Art
	Decentralized Autonomous Organizations
	AI DAO
	Decentralized music distribution technologies
	Financial transparency in the music industry
	Decentralized application frameworks
	Decentralized content delivery networks
	Incentives for file hosting

	Design
	Zero-cost autonomous music industry
	Phone-to-phone network
	Phone-to-phone censorship-free network
	Open protocol and artist freedom
	End-to-end music delivery model
	Identification of participants
	Establishing trust and reducing sybil attacks
	Distributed storage
	Peer-to-peer music sharing
	Distributed search
	Transparent money flow
	Wallet
	Artist Income Division Algorithm

	Content popularity gossiping algorithm
	Scalability

	Implementation
	Zero-server infrastructure
	Phone-to-phone Android application
	Peer-to-peer content discovery
	Music streaming mechanism
	Peer-to-peer financial infrastructure
	Networking
	Release creation and sharing
	Content seeding

	Identity and authenticity
	Peer-to-peer keyword search
	Peer-to-peer payments to artists
	Gossip protocol for content popularity
	Quality assurance

	Evaluation
	Unsupervised experiment: public release
	Automated starter money transactions
	Donation money flow

	Supervised experiments
	Downloading and streaming
	File headers and BitTorrent piece ordering
	Content discovery
	Random access latency

	Devices behind NATs
	Transaction fees
	Missing features
	Scalability
	Bitcoin node
	P2P bootstrap problem
	Battery usage

	Conclusion and Future Work
	Generality: beyond music
	Future research directions

	Bibliography

